
Reporting Red�Blue Intersections Between

Two Sets Of Connected Line Segments

Julien Basch� Leonidas J� Guibas� and G� D� Ramkumar

Department of Computer Science
Stanford University

Stanford� CA ������ USA
e�mail� fjbasch� guibas� ramg � cs�stanford�edu

Abstract� We present a new line sweep algorithm� HeapSweep� for
reporting bichromatic ��purple�	 intersections between a red and a blue
family of line segments
 If the union of the segments in each family is
connected as a point set� HeapSweep reports all k purple intersections
in time O��n� k	��n	 log� n	� where n is the total number of input seg�
ments and ��n	 is the familiar inverse Ackermann function
 To achieve
these bounds� the algorithm keeps only partial information about the
vertical ordering between segments of the same color� using a new data
structure called a kinetic queue
 In order to analyze the running time of
HeapSweep� we also show that a simple polygon containing a set of n
line segments can be partitioned into monotone regions by lines cutting
these segments ��n log n	 times


� Introduction

The problem of �nding and reporting all pair�wise intersections in a set of line
segments is among the �rst to have been studied in computational geometry�
its solution established the use of sweep�line methods and introduced the notion
of output sensitive algorithms� A common variation is the red�blue intersection
problem� where two families of line segments are given � a red and a blue �
and only the bichromatic �purple� intersections are to be reported� Various
assumptions can be made about each family� For our purposes� a family of line
segments will be called disjoint if no pair of segments intersect �except possibly
at their endpoints�� connected if the union of all segments is connected as a point
set� and general otherwise� Each assumption leads to di�erent algorithms and
running times� In what follows� we denote by n the number of �red and blue�
input segments� and by k the number of purple intersections�

The case where each input set is disjoint has been extensively studied� In the
early days of computational geometry� Bentley and Ottmann 	
� introduced their
well�known line sweep algorithm� which reports all purple intersections in time
O��n� k� logn�� Mairson and Stol� 	

� were the �rst to �nd an asymptotically
optimal algorithm running in O�n logn�k� time� This second algorithm searches
for and reports purple intersections at endpoint events during the sweep� the
use of a clever �red�blue cone� invariant allowed the authors to get rid of the



O�log n� overhead on the number k of intersections� The same optimal time
bound for reporting purple intersections was achieved later by several di�erent
methods 	�� ��� �
� 

�� Especially worthy of mention among these is the here�
ditary segment tree data structure of Chazelle� Edelsbrunner� Guibas� and Sharir
	���� which can also be used to count all purple intersections in O�n logn� time�
Thus� in the disjoint case� asymptotically optimal and practical algorithms are
known�

For general inputs� where arbitrary intersections are allowed within each
family� a Bentley�Ottmann sweep reports all purple intersections in O��n � k �
k�� logn� time� where k� is the total number of monochromatic intersections� For
certain inputs k� can be ��n��� while the desired output can be much smaller�
This version of the problem seems to be of about the same di�culty as re�
porting all segment intersections in a given family� For this latter problem�
Guibas� Overmars� and Sharir 	
�� gave a randomized O�n����� � k� solution
using partitioning techniques �what has since become known as cuttings� de�
randomization tools developed later can also be applied�� Agarwal 	�� adapted
this technique to the red�blue version of the problem� lowering the running time
to O�n��� logn � k� for reporting and obtained a method for counting in time
O�n��� logn� as well� at the cost of increasing the space requirement to ��n�����
A signi�cant improvement in these time bounds is unlikely� as the general case
falls within a class of problems at least as hard as Hopcroft�s problem of de�
tecting an incidence between a set of n points and a set of n lines� the fastest
known algorithm for Hopcroft�s problem is due to Matou�sek 	��� 
��� and runs in
O�n���
O�log� n�� time� For a certain general class of algorithms� a lower bound
of ��n���� for this problem was recently given by Erickson 	����

Given this situation� we were motivated to seek additional conditions which
make easier the task of reporting the purple intersections� A natural condition
is that of connectedness for each of the monochromatic inputs� as introduced
above� This condition often pertains in situations where the purple intersection
problem itself arises �e�g�� in the overlay of line arrangements� or of simply�
connected planar subdivisions � though in the latter case the disjoint methods
above apply�� Under the hypothesis of connectedness� Agarwal and Sharir 	��
looked at the problem of detecting a single purple intersection� Their technique
is based on the following idea� pick a point z on the red collection and compute
the blue face F that contains z using a general algorithm to compute a single face
in an arrangement of line segments� Next� pick a blue point on the boundary of
F and compute the red face F � that contains it� If the blue and red segment sets
are connected� the set of purple intersections is non�empty i� the boundaries of
F and F � intersect� and this can be tested via a Bentley�Ottmann sweep� Using
the recent randomized algorithm of Chazelle et al� 	��� to compute a single�face�
a purple intersection is detected in time O�n��n� log n�� where ��n� is the slowly
growing inverse of Ackermann�s function�

Some of the algorithms described above are essentially combinatorial 	
� 

�
�� �
�� and work as well if the line segments are replaced by x�monotone alge�
braic arcs of bounded degree� Others 	�� ��� �� make a more essential use of the



a�ne structure of the input and cannot be so adapted� When considering x�
monotone arcs such that any pair intersects at most s times� it is common to en�
counter the function �s�n�� which denotes the almost�linear maximum length of
an �n� s� Davenport�Schinzel sequence� for more material on Davenport�Schinzel
sequences the reader is referred to 	
���

In this paper� we present a new line sweep algorithm calledHeapSweep� that
reports all the purple intersections between two sets of connected segments� This
algorithm runs in time O��n� k���n� log� n�� If the union of the nr segments of
R and the union of the nb segments of B consist of cr and cb connected compo�
nents respectively� the running time becomes O��cbnr�crnb�k���n� log

� n�� If a
point is known in each component� then the algorithm can be adapted to report
all purple intersections in O��nr

p
cb � nb

p
cr � k���n� log� n� time� Further�

more� the HeapSweep algorithm generalizes to more general arcs� as described
in the previous paragraph� In this case� it reports all purple intersections in
time O��s���n � k� log� n�� To achieve these bounds� we revisit the line sweep
paradigm and relax the requirement that the segments be completely ordered
along the sweep line� The algorithm uses a new data structure called a kinetic
queue 	��� for which we describe both a randomized �a heater� and a deterministic
implementation �a kinetic tournament�� The analysis of HeapSweep requires
a combinatorial lemma on the monotone decomposition of a polygon containing
line segments� as was brie�y mentioned in the abstract� We believe that both
the kinetic queue and this lemma are of independent interest� In the connected
case� our algorithm is the �rst output�sensitive and nearly optimal algorithm for
the red�blue intersection reporting problem�

A reader interested enough to continue reading will �nd a description of
HeapSweep in Section 
 �including a discussion of kinetic queues�� the proof of
the polygon partitioning lemma in Section �� the analysis of the running time of
the algorithm in Section �� related results in Section �� and a discussion of open
problems in Section ��

� The HeapSweep Algorithm

We assume that the input is non�degenerate� i�e� that all end segment points
and intersections occur at distinct x values� Standard perturbation techniques
can be used to guarantee that this is always the case 	�
��

In the traditional Bentley�Ottmann line sweep� a balanced search tree is used
to represent the state of the sweep line� This search tree stores the exact top�
to�bottom ordering of the line segments intersecting the sweep line� In order
to maintain this ordering as the sweep progresses� all intersections between line
segments� namely red�red� blue�blue� and purple intersections have to be detected
and processed� Our algorithm follows the general principle of the line sweep
technique� with a global event queue Q for segment endpoints and intersections
�which are scheduled as they are discovered�� but it stores only a partial ordering
of the segments on the sweep line�

We divide the set of line segments intersecting a given position of the sweep



line into a sequence of contiguous monochromatic blocks ��� ��� � � � � �t ��� is the
top block�� and we keep the ordering of the blocks but not the exact order of seg�
ments within each block� In order to preserve this structure and to detect purple
intersections as the sweep progresses� we need to look for possible intersections
between the top and bottom segments of adjacent blocks along the sweep line�
For this purpose� each block �i is stored in a new data structure� called a kinetic
queue� which is an enhancement of a standard priority queue �with e�cient in�
sertion� deletion� and access to the top priority element� allowing for data with
continuously changing priorities� In our case� the priority of a segment is the
vertical coordinate of its intersection with the sweep line� actually� two kinetic
queues with opposite priorities are maintained for each block� allowing e�cient
access to the smallest and largest element within each block�

A kinetic queue can be implemented by a standard priority queue data struc�
ture� such as a binary heap� What is novel in the kinetic setting is that the
priorities of the elements in the heap are continuously changing� as the sweep
proceeds� Whenever the sweep�line encounters a monochromatic intersection
between a parent�child pair in this heap� the heap structure needs to be up�
dated � but fortunately this is relatively straightforward� Furthermore� these
updates can be scheduled using the same mechanism used by the sweep as a
whole� namely by the maintenance of a global event queue Q ordered by time�
We will call such monochromatic intersection events processed by the algorithm
internal to the corresponding kinetic queue� What makes the implementation of
a kinetic queue challenging is the need to keep low the number of internal events
processed�

In order to process the events corresponding to when a new segment starts or
an old segment ends during the sweep� we will store the top and bottom elements
of each block in a balanced binary search tree T � according to the ordering
of the blocks along the sweep line� Note also that the purple intersections of
interest will always be between the bottom segment in one block and the top
segment in the following block in the ordering� Thus each pair of consecutive
bichromatic elements along T schedules a possible future purple intersection
event� which is re�scheduled each time the top or bottom segment of one of these
blocks changes �due to an internal event in one of the associated kinetic queues��
Purple intersection events themselves typically create two new blocks of size one
�Fig ��a�� which necessitates the modi�cation and re�balancing of T �

��� Endpoint Events

In a traditional sweep line algorithm� segment endpoints are processed easily
by locating their position along the sweep line� and inserting or deleting the
corresponding segment at that position� The situation is more delicate when it
comes to HeapSweep�

When an endpoint starting a blue segment is encountered during the sweep�
the block in which it is located can be found using T � If this block is blue�
the segment can be inserted directly into the corresponding kinetic queue�s�� if
the block is red� however� the blue segment splits the red block into two pieces�



Similarly� when a segment ends� it may cause a block to vanish and require a
merge of two existing blocks of the same color �Fig� ��b�� Both block splits and
merges can require time proportional to the size of the blocks on which they
are performed� In a standard fashion� this cost can be reduced to a number
of kinetic queue insertion or deletion operations proportional to the size of the
smaller block involved� A merge is implemented by inserting each segment from
the smaller of the two blocks into the larger one� A split is implemented by
alternately deleting segments from the top and the bottom of the block until we
reach the position where the new segment has to be inserted� If this position is
reached from the top �rst� say� then the segments deleted from the bottom are
inserted back into the block� while those deleted from the top are inserted into
a new �and initially empty� block�

Figure �� �a� A purple intersection� two new blocks are created� and new
purple intersection events are scheduled� �b� A merge of two blue blocks at
a red right endpoint followed by a split of a blue block caused by a red left
endpoint�

In summary� a split and a merge can be implemented at a cost in terms of
kinetic queue operations which is proportional to the number of segments present
in the smaller of the two blocks involved� This cost is still high in the worst case
but� as we will see in Section �� the connectedness of the input guarantees that
the worst case doesn�t happen too often� Without the connectedness hypothesis
�even in the disjoint case� it is straightforward to construct an example with no
purple intersections where HeapSweep would run in quadratic time�

��� Kinetic Queue Implementations

As was mentioned above� a natural way to implement a kinetic queue is as a stan�
dard binary heap� However� we have been unable to prove satisfactory bounds
on the number of internal events needed to maintain such a structure during



the sweep� Instead� we propose two di�erent implementations of kinetic queues
below� in which the number of internal events is provably within a log factor
of the total number of objects present in the queue� The �rst implementation�
called a heater� is randomized� The second� called a kinetic tournament� is de�
terministic� Though the asymptotic performance of the heater is not superior to
its deterministic counterpart� we have chosen to present it � even to emphasize
it � below� because we feel it may be of independent interest and is likely to
perform better in practice�

To de�ne a heater we proceed as follows� If each object in a set is given
two numbers� a rank and a priority� there is a unique binary tree which is both
a search tree on the ranks and a heap on the priorities� Such a tree is well�
known and called a treap � Aragon and Seidel 	�� used it to create their popular
randomized search tree data structure� which is a treap on objects with a given
rank and a randomly assigned priority� The randomization guarantees that this
structure is balanced with high probability� A heater is like a treap� but this
time� priorities are given and ranks are random� When an element with a given
priority is inserted in a heater� it is �rst assigned a random rank� and inserted
at the appropriate leaf of the heater� It then bubbles up with a sequence of
rotations until it reaches a position consistent with its priority� Deletions are
implemented in an analogous way�

When a heater is used to implement a kinetic queue in HeapSweep� we need
to detect and process certain internal events in order to keep the heater consistent
with the continuously changing priorities �Fig 
�� These internal events are the
intersections between parent�child segment pairs in the heater� When such an
event occurs� a rotation involving the parent and child is performed to keep the
heater consistent � this is su�cient� as at that moment the parent and child
have equal priorities and no other ordering in the heater can be changing at the
same time �by our non�degeneracy assumption�� After the rotation� two parent�
child relationships change in the heater� Thus up to two existing events in the
sweep event queue Q may have to be de�scheduled �deleted�� and two new events
scheduled �inserted��

A kinetic tournament is another implementation of a kinetic priority queue
based on the static tournament tree structure for leader election� It is built
on a perfectly balanced tree which represents a tournament among all elements
which ever appear in the the kinetic queue� Here also� to keep the structure
consistent with the changing priorities during the sweep� an internal event has
to be scheduled in Q for each game of the tournament whose outcome can change
in the future� When such an event happens� the new winner has to be percolated
up the tree� Similar percolations need to happen when a new object appears or
an old one disappears� Thus� unlike the heater case� tournament events in Q can
cause a number of de�schedulings and re�schedulings proportional to the height
of the tournament tree�

In section �� we will obtain bounds on the number of internal events that
may be required to maintain these two implementations of a kinetic queue�



Figure �� Three positions of the sweep line and the corresponding heaters with
attention focused on line segments labeled �randomly� a through f � As the sweep
line moves from position � to 
 passing the intersection between b and e� the
heater remains unchanged �since b and e are not a parent�child pair�� However�
when it moves from position 
 to � passing the intersection between parent�child
pair b and d� a rotation is performed that swaps the priorities of b and d but
otherwise preserves the inorder sequence�

� Economical Polygon Regularization

We call regularization the process of decomposing a polygon �or more generally�
a subdivision� in the plane into x�monotone simply connected regions� In this
section we look at the following situation� we have a simple polygonal face F
�in an arrangement� containing a set R of �possibly intersecting� line segments�
We show that F can be regularized via a number of vertical threads which cause
only O�jRj log jRj� cuts of these segments� In the next section� the cost of Merge
and Split operations of the HeapSweep algorithm will be shown to depend on
these cuts�

A point on the boundary of the polygon F is called critical if it is locally
x�extremal and concave� In other words� a critical point is a concave vertex of
F where both incident edges are to the left or to the right of the vertex�

De�nition ���� �Economical regularization� The R�economical regulariza�
tion of F is the decomposition of F into x�monotone regions� obtained by the
following procedure� from each critical vertex v of F � draw two threads verti�
cally� up and down from v� until they reach the polygon boundary� Keep only
the thread that intersects the fewest elements of R�

The crucial aspect here is that we only keep the �shorter� of the two threads
at each critical vertex� It is easy to see that the economical regularization de�nes
a monotone decomposition of P � We de�ne the cost of the regularization to be
the total number of intersections ��cuts�� between segments of R and the selected
threads� To analyze this cost� we use a lemma reminiscent of the classical analysis
of the simplest Union�Find algorithm�



Lemma ���� Let T be a tree and denote the left �resp� right� child of a node �
by ���� �resp� r����� Each node � is given a �possibly negative� integer weight
w� � The subtree weight W� of a node � is the weight of its subtree� W� �
w��W�����Wr���� De�ne the cost of a node � as the weight of its lightest child�
i�e� c� � min�W�����Wr����� and the absolute weight of T to be ST �

P
� jw� j�

Then� if at least one node of T has a non�zero weight� we have�
X

�

jc� j � ST logST �

Proof� By induction on the structure of the tree� ut

��� The Reachability Tree

We proceed to de�ne a tree decomposition of the simple polygon F � on which
we later use the above lemma� In order to do so� the critical vertices need to
be separated in two di�erent groups� the split vertices of F � that are locally x�
minimal� and the merge vertices� that are locally x�maximal� We now focus only
on the split vertices� and later invoke the same technique for the merge vertices
by reversing the x�axis� By non�degeneracy� we may assume that no two critical
vertices of F have the same x�coordinate�

De�nition ���� �Up�down reachability� Let F be a simple polygon� and v
be a split vertex of F � A point p � F to the right of v is up �resp� down�
reachable from v if there exist a path from v to p inside F which starts locally
above �resp� below� v and remains to the right of v�

De�nition ���� �Up�down child	 up�down region� A point p� p � F is an
up �resp� down� child of split vertex v if v is the rightmost split vertex from
which p is reachable� and p is up �resp� down� reachable from v� The set of all
up �resp� down� children of v is called the up�region �resp� down�region� of v�
The set r of points with no parent is called the orphan region�

Since F is simple� no point can be simultaneously up and a down reachable
from the same vertex� so that the regions de�ned above partition F � Each region
is delimited by portions of the boundary of F and by portions of vertical lines
passing through split vertices� Note that �i� a region need not be connected� and
�ii� an up�child is not necessarily �above� its parent inn the plane �Fig� ��a��

Lemma ��
� A region contains at most one split vertex on its right boundary�

Proof� By contradiction� ut
We now build a connectivity graph between these regions� with one node per

region� two nodes are connected in this graph if they have a vertical boundary in
common� By Lemma ���� this graph is a full binary tree called the reachability
tree of F � which we root at the orphan region� If the right boundary of a region
contains a split vertex v� the associated node in the tree bears the up and down
regions of v as its two children �Fig� ��b��



Figure �� �a� A portion of a simply connected polygonal region �in white��
and the regions associated with the split vertices �vertex u is not shown�� �b�
the associated portion of the reachability tree� Note that the merge vertices are
ignored in this decomposition�

��� Cost of the Economical Regularization

Lemma ���� Let F be a simple polygon in the plane that contains a set R of
�possibly intersecting� segments� The R�economical regularization of F cuts the
segments of R a total of O�jRj log jRj� times�

Proof� We consider only the cuts made by the split vertices of F � and prove
that there are O�jRj log jRj� of them� The same argument holds for the merge
vertices� We use below the vocabulary of Lemma ��
�

Construct the reachability tree T of F � If a node � of T has corresponding
region 	� set the weight w� of � to be the number of segments that end in 	 minus
the number of segments that start in 	 �a segment �starts� at its left endpoint
and �ends� at its right one�� Therefore� the subtree weight W� of � is simply
the number of segments crossing into 	 along its left boundary� If the region 	
terminates on the right with a split vertex v� the cost of � is either the number
of segments entering the up�region of v� or the number of segments entering the
down�region of v� whichever is smaller�

The total absolute weight ST of T is at most the number of end�points of all
segments� It follows from Lemma ��
 that the total cost of T is O�jRj log jRj��

For the R�economical decomposition of F � we choose to make a cut at each
split vertex v with the thread �going up or down� that cuts the fewer segments
till we reach the boundary of F again� Such a thread is a subset of the left
boundary of either the up�region or the down�region of v� Therefore� it doesn�t
cut more segments than the cost �in the above sense� of the region to which
v belongs� In particular� by proceeding this way we may choose to cut in the
�wrong� direction� but we will reach the boundary of F and stop cutting before
we have spent more than we can a�ord� ut

It is not hard to give an example showing that the bound in this lemma is
tight to within a constant factor �a �ruler function� polygon with one red segment
per tick is such an instance � the two threads from each vertex cut the same
number of red segments�� Our purpose in de�ning the regularization is to bound
the total cost of merge and splits in HeapSweep� This cost is captured by the
following corollary�



Corollary ���� Let B be a connected set of blue segments on the plane� and R be
a set of red segments that don�t intersect with B� The R�standard regularization
of all faces of the arrangement de�ned by B cuts O�jRj log jRj� segments of R�

Proof� Since the blue segments are connected� each face of their arrangement
is a simple polygon� except for the outer face� To make the outer face simply
connected� cut that face by drawing a vertical cut up from the leftmost blue
vertex� All faces are now simply connected� and Lemma ��� applies to each �the
linear cost of the extra cut in the outer face is absorbed in the overall bound��

ut

� HeapSweep Analysis

In this section� we obtain expected and worst�case time and space bounds for
the algorithm HeapSweep in the connected case of the red�blue intersection
reporting problem� We �rst examine the expected time complexity of a sweep
of a set of segments by one heater� Then we perform a similar analysis for a
tournament tree� Finally� we show how the economical polygon regularization
can be used to chop all segments in pieces so as to reduce the analysis of the
HeapSweep algorithm to that of a set of independent kinetic queues� For
clarity� the worst case update time of the main event queue Q is denoted by tQ
�it is clear that this quantity is O�log n���

��� Expected Time Bounds for Heaters

We now consider a heater H that sweeps over a set S of s line segments� We
recall that the heater structure is at the same time a heap on the intersection
height of the segments with the sweep line� and a search tree on random ranks
assigned to each segment� Expectations are taken over a uniform distribution
of all s� rankings of S� The good behavior of a heater relies on two facts that
we proceed to prove� �i� its depth Dx�H� at sweep position x is logarithmic in
expectation� which allows e�cient insertion deletion of elements �Lemma �����
and �ii� there are not too many internal updates� that is� segment pairs that are
in a parental relationship in H at the time they intersect �Lemma �����

Lemma ���� Let Dx�H� be the depth of the heater H� sweeping over a set S of
segments� at sweep position x� Then E	Dx�H�� � O�log jSj�� The expected cost
of an insertion or a deletion in H at any time is O�tQ log jSj�
Proof� This result is an immediate consequence of the original analysis of treaps
by Aragon and Seidel 	��� once we notice that uniformly random ranks on ele�
ments of preassigned priorities de�nes the same distribution on the space where
the ranks are �xed and the priorities are random�

An insertion of an element in the heater thus causes an expected O�log jSj�
rotations� Each rotation disturbs O��� parental relationships� and requires O���
updates of the global priority queue� The expected time of an insertion �and of
a deletion� is thus O�tQ log jSj�� ut



The rest of this section focuses on bounding the expected number of internal
heater updates� The analysis makes crucial use of the randomness of the struc�
ture� The analysis proceeds as follows� We �rst observe that the probability of a
given intersection to cause an update in the heater is related only to its level �de�
�ned below�� We then perform a standard computation �a la Clarkson�Shor 	�
��
based on the well known combinatorial result bounding the complexity of the
upper envelope of a set of line segments�

De�nition ��� �Level in an arrangement�� Given a set S of segments on
the plane assumed to be in a non�degenerate position� the level of a point p�
denoted 
S�p� is the number of segments above that point�

Lemma ���� Let H be a heater that sweeps over a set S of segments� If s�� s� �
S intersect at vertex v� the probability that this intersection modi�es the heater
is �

�S�v��� �

Proof� Let us place the sweep line just before v� where we assume that s� is below
s�� and consider only the set S� made of s�� s�� and the 
S�v� segments that are
above v� These form a contiguous group at the top of the heater� and we restrict
our attention to the pruned tree on S�� as well as to the induced random ranking
amongst those segments� The intersection will trigger an internal update if and
only if s� is the parent of s�� However� as s� is the lowest segment in S�� it is
a leaf of the subtree� so that s� can be its parent only if they are contiguous in
the induced ranking� Now� the ranking on S� is a uniform random variable on
all permutations of S�� and thus the probability that si� sj are parent and child
is 
��
S�v� � 
�� ut

Levels in arrangements of lines and segments are a well�studied topic in com�
putational geometry 	
� 
��� Although estimating the exact number of vertices
at level � has proven di�cult� a simple bound on the number of vertices of level
at most � can be obtained using standard random sampling techniques 	�
��

Lemma ���� Let S be a set of s segments in the plane� Denote by t� the number
of vertices that have level exactly �� Then�

X

i��

ti � ��� ��s��s� �

Proof� This is a special case of Clarkson and Shor 	�
�� Theorem ���� ut
Lemma ��
� Let H be a heater sweeping over s segments in the plane� De�
note by C�H� the number of intersections that cause an update of H� Then
E	C�H�� � O�s��s� log s�� The expected cost of the sweep is O�tQs��s� log s��

Proof� By linearity of expectation and Lemma ���� we have�

E	C�H�� �

s��X

���

t�



�� 

�



Using summation by parts� we replace t� in this expression by its partial sum
T� �

P
i�� ti� which is bounded by Lemma ���� More precisely�

E	C�H�� � 

T�

�� 


����
s��

�

� 


s��X

���

T���
��

��� 
���� ��

� 
s��s� � 


s��X

���

��� 
�s��s�
�

��� 
���� ��

� O�s��s� log s� �ut
As an internal update is implemented by a single rotation which disturbs the

parental relationship of O��� nodes� the total amount of time spent in internal
updates is O�tQs��s� log s�� By Lemma ���� the additional expected cost of the

s insertions deletions is O�tQs log s��

��� Kinetic Tournament Trees

It turns out that O�s��s� log s� is also the correct bound for the number of inter�
nal events processed by a kinetic tournament used for sweeping over s segments�
Consider a divide�and�conquer strategy for computing the upper envelope of
these segments� in which the binary structure of the tournament tree re�ects the
partitionings of the segments used during the recursion� The computation tree of
this algorithm mirrors the kinetic tournament� and all internal events happening
at a given node of the tournament tree correspond to features in the upper enve�
lope of the segments subset de�ned by the subtree rooted at that node� Hence�
the number of internal events is exactly equal to the running time of the divide
and conquer algorithm� which is well known to be O�s��s� log s� 	
��� This type
of analysis will be elaborated upon in 	���

The tournament tree can be made dynamic as follows� Imagine a very large
sequence of leaves and a perfectly balanced prototypical tournament tree built
upon that sequence� At any one time the actual elements present in the tour�
nament tree occupy a portion near the leftmost leaf of that prototypical tree�
determined by the subtree rooted at the node where the current leader is deter�
mined� Insertions are processed by adding new leaves to the right of the current
set of leaves� creating� on occasion� a new root to accommodate more elements�
In order to hold the structure in an amount of space linear in the number of
nodes present� upon deletion of a leaf element� the lowest node representing a
game with that element absorbs and removes its other �non�deleted� child �this
works just like the �easy case� in binary tree node deletion � when the node being
removed can just be short�circuited�� Both insertions and deletions must then
percolate up the tournament tree�

��� Time and Space Complexity of HeapSweep

It is time to conclude the analysis by putting together the regularization lemma
and the analysis of heaters� Recall that n is the total number of red and blue seg�



ments� and that k is the number of bichromatic intersections that the algorithm
will output�

Theorem ���� The HeapSweep algorithm reports all purple intersections be�
tween red and blue segments using linear space and O��n� k���n� log� n� time�

Proof� The working space requirement of HeapSweep is simple to assess� Each
kinetic queue requires linear space in the number of segments it maintains� and
it is responsible for a number of events in the global queue Q that is also linear
in its size� Other than endpoints and kinetic queues internal events� the only
other events in Q are the scheduled purple intersections� of which at any time
there can be at most one per red�blue alternation along the sweep line� Thus the
total size at any time of the search tree T for endpoints� of the event queue Q�
and of all the kinetic queues together� is O�n�� We use a straightforward binary
heap implementation for Q� so an update �insertion or deletion� in the global
queue takes time tQ � O�logn��

We now restrict our attention to the time complexity of the maintenance of
the red blocks� As each segment may appear in several kinetic queues during
its life�time� it is necessary to chop all segments into a reasonable number of
fragments� so that each fragment appears in only one kinetic queue�

The red segments are broken up in two steps� First� red segments are broken
at all purple intersections into proto�fragments� Such an intersection can now be
seen �from the point of view of red blocks� as the deletion of a red proto�fragment
from one kinetic queue� followed by an insertion of another proto�fragment� ei�
ther in a new kinetic queue� or into an existing one �Fig� ��a�� If there are nr
red segments� the number of red proto�fragments is exactly nr � k� Second� the
R�economical regularization of the faces de�ned by the blue segments� �De�ni�
tion ���� further partitions the nr � k red proto�fragments into fragments� at
the points where they are cut by the vertical threads� From corollary ��
� the
proto�fragments �which don�t intersect the blue segments anymore� are cut in
O��nr�k� logn� fragments� The merge of two kinetic queues can now be seen as
the destruction of all fragments from the smaller one� together with the insertion
of equally many new fragments into the larger one� Similarly� the split operation
involves the deletion of some fragments from one kinetic queue and the creation
of a new one made only of new fragments�

It is now possible� if we set aside the blue segments� to describe the sit�
uation as follows� We have a family S of O��nr � k� logn� segments �frag�
ments�� partitioned into a number of disjoint subsets �Si�i� each swept over
by a di�erent kinetic queue� Using one of the prescribed kinetic queue imple�
mentations� the overall time of insertions� deletions� and internal updates isP

iO�tQjSij��Si� log jSij� � O�tQ�nr � k���n� log� n�� The same analysis ap�
plies to the cost related to the blue kinetic queues� The maintenance cost of the
�interface� between blocks� i�e� the purple events� does not add to the complex�
ity� the scheduling de�scheduling of a purple event can only be caused by �and
charged to� an internal update that modi�es the top or bottom of one of the
adjacent kinetic queues�



With the bound on tQ mentioned above� this implies the desired bound on the
running time of HeapSweep� which is randomized or deterministic depending
on the speci�c kinetic queue implementation� ut

� Applications and Related Results

The algorithm HeapSweep was developed in the context of a theory of poly�
hedral tracings and their convolution 	��� In a few words� one obtains the con�
volution of two polyhedra �a red and a blue� by �rst computing their geometric
duals� projecting these duals on the unit sphere� and then computing all pairs
of red�blue intersecting features� For non�convex polyhedra� the projection of
the dual on the sphere has self�intersections� which do not contribute to the
convolution� As this projection is connected� HeapSweep can be used� and it
is possible to compute the convolution of two polyhedra of sizes nr and nb in
output sensitive time O��n�k���n� log� n�� where n � nr�nb� and k is the size
of the convolution� Amongst other applications� the convolution can be used to
obtain the Minkowski sum of two polyhedra�

We mention below some extensions to the main algorithm� The proofs of the
stated results are obtained from minor modi�cations of the above analysis�
Monotone arcs� Although the analysis has been performed for line segments
for the sake of the exposition� the same algorithm applies for a more general
class of arcs� The only di�erence is the complexity of the upper envelope of a
family of arcs� which is then carried through the entire analysis� for both the
randomized and the deterministic implementations of a kinetic queue mentioned
in this paper� The regularization lemma also holds if line segments are replaced
by x�monotone arcs�

Theorem 
��� Let R�B be two sets of x�monotone arcs� such that each mono�
chromatic family de�nes a connected point set on the plane� Assume that two
pairs of arcs intersect at most s times� If n is the number of input arcs� the
algorithm HeapSweep computes all k purple intersections in time O��s���n�
k� log� n�� where �s�m� is the length of the longest �m� s��Davenport�Schinzel
sequence�

For instance� algebraic curves of bounded degree obey the requirements men�
tioned in this theorem �provided they are �rst decomposed into a constant num�
ber of x�monotone parts each��
Several components� HeapSweep can be used without modi�cation if the
blue set has cb components and the red set has cr components� In that case�
Corollary ��
 needs to be modi�ed� from each component� a thread needs to be
drawn to obtain a simple arrangement� and the algorithm runs in time O��cbnr�
crnb � k���n� logn�� If one point from each component is given� it is possible
to compute a low stabbing number spanning tree between these points 	
���
and thus provide connected input to HeapSweep� The spurious intersections
generated by the spanning trees cause a total running time of O��nr

p
cb�nb

p
cr�

k���n� log� n��



General case in linear space� In order to solve the general red�blue inter�
section problem in linear space� the cuttings technique 	
�� �� can be applied�
but the running time becomes O�n����� � k�� The � term can be made as small
as desired� but at the cost of a increased hidden constant in the space bounds�
Using HeapSweep� we obtain a O��n��� � k���n� log� n� algorithm to report
all intersections in the general case� with a linear space cost that has a small
implied constant� This can be done by preprocessing the input to identify con�
nected subsets of segments �see 	
�� ���� on which it is then possible to use the
variation of HeapSweep for known components mentioned above� Details are
omitted in this paper�
j
level� If the j�level in an arrangement of n arcs has complexity k� the algorithm
HeapSweep can be adapted to compute it in time O��s�n�k� log� n�� whether
or not the input set is connected� by keeping two kinetic queues grouping all
segments above and below the current j�level� This generalizes the results of
Edelsbrunner and Welzl 	���� who computed the j�level of an arrangement of
line segments in O��n� k� log� n� time using a line sweep technique that can be
retroactively be seen as a precursor of HeapSweep� Cole� Sharir� and Yap 	���
improved these bounds to O��n � k� log� j��

Both methods mentioned above use the data structure of Overmars and
van Leeuven 	
�� for dynamic maintenance of a convex hull with insertions and
deletion cost of O�log� n� per operation� Mark de Berg pointed out that this
data structure can also be used in HeapSweep� in replacement of the kinetic
queue� giving an improved O��n� k� log� n� algorithm for reporting all k purple
intersections between n red and blue line segments 	����
Kinetic heaps� We mentioned earlier that the most straightforward idea for
implementing a kinetic queue is to use a standard binary heap� If we use a
kinetic heap to sweep over an arrangement of s in�nite straight lines� then we
can prove that the number of internal events processed will be O�s log� s� �the
argument is non�trivial�� But we were unable to extend this argument to the
case of sweeping over a arrangement of line segments� as needed in this paper�

� Conclusions

We have presented a new algorithm� HeapSweep� to report all purple inter�
sections between red and blue possibly intersecting line segments on the plane�
HeapSweep is a variation of the line sweep method� that stores only a partial
ordering of segments on the sweep line� The sweep line is divided into maximal
contiguous blocks of monochromatic segments and the segments of each block
are stored in a novel data structure called a kinetic queue� A kinetic queue
keeps track of the top and bottom segments of a block and allows the detection
of purple intersections that can only occur between top and bottom segments of
consecutive blocks� If the set of red segments �resp� blue segments� is connected�
i�e� their union as a point set is connected� we have proved that HeapSweep
reports all purple intersections in expected time O��n� k���n� log� n�� where n
is the input size and k is the number of purple intersections�



The connectedness assumption is interesting as it is not uncommon in prac�
tice� and yet there does not seem to be any obvious way to take advantage of
it in traditional techniques such as divide�and�conquer� random sampling� and
segment trees � since this precious property is not preserved in subsets of the
input set� In contrast� HeapSweep makes an interesting use of connectedness�
through the regularization lemma� that may �nd use in other applications�

There are still too many logarithms in the running time of HeapSweep� in
particular in the k term� In order to reduce this overhead� we would like to see an
integration of our technique �that relaxes the vertical ordering of the sweep line�
with the methods of Edelsbrunner and Guibas 	��� or Mairson and Stol� 	

�
�that relax the horizontal ordering of the sweep�� The bounds we obtained also
give hope that a �ltering search technique 	�� coupled with geometric partitioning
could achieve an optimal O�n logn� k� running time �in a sense� HeapSweep
is an instance of �ltering search� as it detects more intersections than necessary
� but not too many more��

There doesn�t seem to be any hope of adapting HeapSweep to solve the
counting problem e�ciently� The hereditary segment�tree approach 	��� used to
obtain an optimal algorithm for counting purple intersections in the disjoint case
cannot be adapted either� since segment tree nodes may have a disconnected set
of segments� In fact� we believe that connectedness does not simplify the count�
ing problem� and we would like to see an ��n���� lower bound to substantiate
this claim�

Acknowledgments� We would like to thank Jan Jannink for suggesting the
term �heater�� and Chandra Chekuri and Sanjeev Khanna for useful discussions�
Special thanks to John Hershberger� who is largely responsible for the determin�
istic implementation of the kinetic queue with a tournament tree� and to Mark
de Berg for suggesting the use of the dynamic convex hull data structure� We
also wish to thank an anonymous referee for pointing out the reference 	����

Leonidas Guibas wishes to acknowledge support by NSF Grant CCR��
��
��
and US Army Grant ��
���
A during this research�

References



 P
 K
 Agarwal
 Partitioning arrangements of lines� II
 Applications
 Discrete

Comput� Geom�� ���������� 
���


�
 P
 K
 Agarwal� M
 de Berg� J
 Matou�sek� and O
 Schwarzkopf
 Constructing levels
in arrangements and higher order Voronoi diagrams
 In Proc� ��th Annu� ACM

Sympos� Comput� Geom�� pages ������ 
���


�
 P
 K
 Agarwal and M
 Sharir
 Red�blue intersection detection algorithms� with
applications to motion planning and collision detection
 In Proc� �th Annu� ACM

Sympos� Comput� Geom�� pages ������ 
���


�
 C
 Aragon and R
 Seidel
 Randomized search trees
 In Proc� ��th Annu� IEEE

Sympos� Found� Comput� Sci�� pages �������� 
���


�
 J
 Basch� L
 J
 Guibas� and J
 Hershberger
 Data structures for mobile data
 In
preparation




�
 J
 Basch� L
J
 Guibas� G
D
 Ramkumar� and L
 Ramshaw
 Polyhedral tracings and
their convolution
 In Proc� �nd Workshop on Algorithmic Fundations of Robotics�

���


�
 J
 L
 Bentley and T
 A
 Ottmann
 Algorithms for reporting and counting geometric
intersections
 IEEE Trans� Comput�� C������������ 
���


�
 B
 Chazelle
 Filtering search� a new approach to query�answering
 SIAM J�

Comput�� 
���������� 
���


�
 B
 Chazelle and H
 Edelsbrunner
 An optimal algorithm for intersecting line seg�
ments in the plane
 J� ACM� ���
���� 
���



�
 B
 Chazelle� H
 Edelsbrunner� L
 Guibas� and M
 Sharir
 Algorithms for bichro�
matic line segment problems and polyhedral terrains
 Algorithmica� 

�

��
���

���





 B
 Chazelle� H
 Edelsbrunner� L
 Guibas� M
 Sharir� and J
 Snoeyink
 Computing
a face in an arrangement of line segments and related problems
 SIAM J� Comput��
���
����
���� 
���



�
 K
 L
 Clarkson and P
 W
 Shor
 Applications of random sampling in computational
geometry� II
 Discrete Comput� Geom�� ��������
� 
���



�
 R
 Cole� M
 Sharir� and C
 K
 Yap
 On k�hulls and related problems
 SIAM J�

Comput�� 
���
���� 
���



�
 M
 de Berg
 Personal communication
 
���



�
 M
 de Berg and O
 Schwarzkopf
 Cuttings and applications
 Report RUU�CS�������
Dept
 Comput
 Sci
� Utrecht Univ
� Utrecht� Netherlands� August 
���



�
 H
 Edelsbrunner and L
 J
 Guibas
 Topologically sweeping an arrangement

J� Comput� Syst� Sci�� ���
���
��� 
���
 Corrigendum in �� �
��
	� ������




�
 H
 Edelsbrunner and E
 P
 M�ucke
 Simulation of simplicity� a technique to cope
with degenerate cases in geometric algorithms
 ACM Trans� Graph�� �����
���

���



�
 H
 Edelsbrunner and E
 Welzl
 Constructing belts in two�dimensional arrangements
with applications
 SIAM J� Comput�� 
����
����� 
���



�
 J
 Erickson
 New lower bounds for Hopcroft�s problem
 In Proc� ��th Annu� ACM

Sympos� Comput� Geom�� pages 
���
��� 
���


��
 L
 Guibas� M
 Overmars� and M
 Sharir
 Intersecting line segments� ray shooting�
and other applications of geometric partitioning techniques
 In Proc� �st Scand�

Workshop Algorithm Theory� volume �
� of Lecture Notes in Computer Science�
pages �����
 Springer�Verlag� 
���


�

 S
 Hart and M
 Sharir
 Nonlinearity of Davenport�Schinzel sequences and of gen�
eralized path compression schemes
 Combinatorica� ��
�
�
��� 
���


��
 H
 G
 Mairson and J
 Stol�
 Reporting and counting intersections between two sets
of line segments
 In R
 A
 Earnshaw� editor� Theoretical Foundations of Computer

Graphics and CAD� volume F�� of NATO ASI� pages �������
 Springer�Verlag�
Berlin� West Germany� 
���


��
 J
 Matou�sek
 Spanning trees with low crossing number
 Informatique Th�eorique

et Applications� ����	�
���
��� 
��



��
 J
 Matou�sek
 Range searching with e�cient hierarchical cuttings
 Discrete Comput�

Geom�� 
���	�
���
��� 
���


��
 K
 Mulmuley
 On levels in arrangements and Voronoi diagrams
 Discrete Comput�

Geom�� ���������� 
��



��
 M
 H
 Overmars and J
 van Leeuwen
 Maintenance of con�gurations in the plane

J� Comput� Syst� Sci�� ���
������� 
��





��
 Larry Palazzi and Jack Snoeyink
 Counting and reporting red�blue segment inter�
sections
 In Proc� �rd Workshop Algorithms Data Struct�� volume ��� of Lecture
Notes in Computer Science� pages �������� 
���


��
 M
 Sharir and P
 K
 Agarwal
 Davenport�Schinzel Sequences and Their Geometric

Applications
 Cambridge University Press� New York� 
���



