Reporting Red-Blue Intersections Between
Two Sets Of Connected Line Segments

Julien Basch, Leonidas J. Guibas, and G. D. Ramkumar

Department of Computer Science
Stanford University
Stanford, CA 94305, USA

e-mail: {jbasch, guibas, ram} @ cs.stanford.edu

Abstract. We present a new line sweep algorithm, HEAPSWEEP, for
reporting bichromatic (‘purple’) intersections between a red and a blue
family of line segments. If the union of the segments in each family is
connected as a point set, HEAPSWEEP reports all k£ purple intersections
in time O((n + k)a(n)log® n), where n is the total number of input seg-
ments and «(n) is the familiar inverse Ackermann function. To achieve
these bounds, the algorithm keeps only partial information about the
vertical ordering between segments of the same color, using a new data
structure called a kinetic queue. In order to analyze the running time of
HEAPSWEEP, we also show that a simple polygon containing a set of n
line segments can be partitioned into monotone regions by lines cutting
these segments ©(nlogn) times.

1 Introduction

The problem of finding and reporting all pair-wise intersections in a set of line
segments is among the first to have been studied in computational geometry;
its solution established the use of sweep-line methods and introduced the notion
of output sensitive algorithms. A common variation is the red-blue intersection
problem, where two families of line segments are given — a red and a blue —
and only the bichromatic (purple) intersections are to be reported. Various
assumptions can be made about each family. For our purposes, a family of line
segments will be called disjoint if no pair of segments intersect (except possibly
at their endpoints), connected if the union of all segments is connected as a point
set, and general otherwise. Each assumption leads to different algorithms and
running times. In what follows, we denote by n the number of (red and blue)
input segments, and by k the number of purple intersections.

The case where each input set is disjoint has been extensively studied. In the
early days of computational geometry, Bentley and Ottmann [7] introduced their
well-known line sweep algorithm, which reports all purple intersections in time
O((n+ k) logn). Mairson and Stolfi [22] were the first to find an asymptotically
optimal algorithm running in O(nlog n+k) time. This second algorithm searches
for and reports purple intersections at endpoint events during the sweep; the
use of a clever ‘red-blue cone’ invariant allowed the authors to get rid of the

O(logn) overhead on the number k of intersections. The same optimal time
bound for reporting purple intersections was achieved later by several different
methods [9, 10, 12, 27]. Especially worthy of mention among these is the here-
ditary segment tree data structure of Chazelle, Edelsbrunner, Guibas, and Sharir
[10], which can also be used to count all purple intersections in O(nlogn) time.
Thus, in the disjoint case, asymptotically optimal and practical algorithms are
known.

For general inputs, where arbitrary intersections are allowed within each
family, a Bentley-Ottmann sweep reports all purple intersections in O((n + k +
k")logn) time, where k' is the total number of monochromatic intersections. For
certain inputs k' can be 2(n?), while the desired output can be much smaller.
This version of the problem seems to be of about the same difficulty as re-
porting all segment intersections in a given family. For this latter problem,
Guibas, Overmars, and Sharir [20] gave a randomized O(n*/3t¢ + k) solution
using partitioning techniques (what has since become known as cuttings; de-
randomization tools developed later can also be applied). Agarwal [1] adapted
this technique to the red-blue version of the problem, lowering the running time
to O(n*?logn + k) for reporting and obtained a method for counting in time
O(n*/3logn) as well, at the cost of increasing the space requirement to @(n*/3).
A significant improvement in these time bounds is unlikely, as the general case
falls within a class of problems at least as hard as Hopcroft’s problem of de-
tecting an incidence between a set of n points and a set of n lines; the fastest
known algorithm for Hopcroft’s problem is due to Matousek [15, 24], and runs in
O(n*/3200°8" 7)) time. For a certain general class of algorithms, a lower bound
of 2(n*/3) for this problem was recently given by Erickson [19].

Given this situation, we were motivated to seek additional conditions which
make easier the task of reporting the purple intersections. A natural condition
is that of connectedness for each of the monochromatic inputs, as introduced
above. This condition often pertains in situations where the purple intersection
problem itself arises (e.g., in the overlay of line arrangements, or of simply-
connected planar subdivisions — though in the latter case the disjoint methods
above apply). Under the hypothesis of connectedness, Agarwal and Sharir [3]
looked at the problem of detecting a single purple intersection. Their technique
is based on the following idea: pick a point z on the red collection and compute
the blue face F that contains z using a general algorithm to compute a single face
in an arrangement of line segments. Next, pick a blue point on the boundary of
F and compute the red face F' that contains it. If the blue and red segment sets
are connected, the set of purple intersections is non-empty iff the boundaries of
F and F' intersect, and this can be tested via a Bentley-Ottmann sweep. Using
the recent randomized algorithm of Chazelle et al. [11] to compute a single-face,
a purple intersection is detected in time O(na(n)logn), where a(n) is the slowly
growing inverse of Ackermann’s function.

Some of the algorithms described above are essentially combinatorial [7, 22,
3, 12], and work as well if the line segments are replaced by z-monotone alge-
braic arcs of bounded degree. Others [9, 11, 1] make a more essential use of the

affine structure of the input and cannot be so adapted. When considering z-
monotone arcs such that any pair intersects at most s times, it is common to en-
counter the function Ag(n), which denotes the almost-linear maximum length of
an (n, s) Davenport-Schinzel sequence; for more material on Davenport-Schinzel
sequences the reader is referred to [28].

In this paper, we present a new line sweep algorithm called HEAPSWEEP, that
reports all the purple intersections between two sets of connected segments. This
algorithm runs in time O((n + k)a(n)log® n). If the union of the n, segments of
R and the union of the n, segments of B consist of ¢, and ¢, connected compo-
nents respectively, the running time becomes O((cyn, +c,ny+k)a(n) log® n). If a
point is known in each component, then the algorithm can be adapted to report
all purple intersections in O((n,\/cy + npy/r + k)a(n)log® n) time. Further-
more, the HEAPSWEEP algorithm generalizes to more general arcs, as described
in the previous paragraph. In this case, it reports all purple intersections in
time O(Ay42(n + k)log®n). To achieve these bounds, we revisit the line sweep
paradigm and relax the requirement that the segments be completely ordered
along the sweep line. The algorithm uses a new data structure called a kinetic
queue [5], for which we describe both a randomized (a heater) and a deterministic
implementation (a kinetic tournament). The analysis of HEAPSWEEP requires
a combinatorial lemma on the monotone decomposition of a polygon containing
line segments, as was briefly mentioned in the abstract. We believe that both
the kinetic queue and this lemma are of independent interest. In the connected
case, our algorithm is the first output-sensitive and nearly optimal algorithm for
the red-blue intersection reporting problem.

A reader interested enough to continue reading will find a description of
HEAPSWEEP in Section 2 (including a discussion of kinetic queues), the proof of
the polygon partitioning lemma in Section 3, the analysis of the running time of
the algorithm in Section 4, related results in Section 5, and a discussion of open
problems in Section 6.

2 The HEAPSWEEP Algorithm

We assume that the input is non-degenerate, i.e. that all end segment points
and intersections occur at distinct x values. Standard perturbation techniques
can be used to guarantee that this is always the case [17].

In the traditional Bentley-Ottmann line sweep, a balanced search tree is used
to represent the state of the sweep line. This search tree stores the exact top-
to-bottom ordering of the line segments intersecting the sweep line. In order
to maintain this ordering as the sweep progresses, all intersections between line
segments, namely red-red, blue-blue, and purple intersections have to be detected
and processed. Our algorithm follows the general principle of the line sweep
technique, with a global event queue Q for segment endpoints and intersections
(which are scheduled as they are discovered), but it stores only a partial ordering
of the segments on the sweep line.

We divide the set of line segments intersecting a given position of the sweep

line into a sequence of contiguous monochromatic blocks I, I, ..., I (17 is the
top block), and we keep the ordering of the blocks but not the exact order of seg-
ments within each block. In order to preserve this structure and to detect purple
intersections as the sweep progresses, we need to look for possible intersections
between the top and bottom segments of adjacent blocks along the sweep line.
For this purpose, each block I is stored in a new data structure, called a kinetic
queue, which is an enhancement of a standard priority queue (with efficient in-
sertion, deletion, and access to the top priority element) allowing for data with
continuously changing priorities. In our case, the priority of a segment is the
vertical coordinate of its intersection with the sweep line; actually, two kinetic
queues with opposite priorities are maintained for each block, allowing efficient
access to the smallest and largest element within each block.

A kinetic queue can be implemented by a standard priority queue data struc-
ture, such as a binary heap. What is novel in the kinetic setting is that the
priorities of the elements in the heap are continuously changing, as the sweep
proceeds. Whenever the sweep-line encounters a monochromatic intersection
between a parent-child pair in this heap, the heap structure needs to be up-
dated — but fortunately this is relatively straightforward. Furthermore, these
updates can be scheduled using the same mechanism used by the sweep as a
whole, namely by the maintenance of a global event queue Q ordered by time.
We will call such monochromatic intersection events processed by the algorithm
internal to the corresponding kinetic queue. What makes the implementation of
a kinetic queue challenging is the need to keep low the number of internal events
processed.

In order to process the events corresponding to when a new segment starts or
an old segment ends during the sweep, we will store the top and bottom elements
of each block in a balanced binary search tree 7, according to the ordering
of the blocks along the sweep line. Note also that the purple intersections of
interest will always be between the bottom segment in one block and the top
segment in the following block in the ordering. Thus each pair of consecutive
bichromatic elements along 7 schedules a possible future purple intersection
event, which is re-scheduled each time the top or bottom segment of one of these
blocks changes (due to an internal event in one of the associated kinetic queues).
Purple intersection events themselves typically create two new blocks of size one
(Fig 1-a), which necessitates the modification and re-balancing of 7.

2.1 Endpoint Events

In a traditional sweep line algorithm, segment endpoints are processed easily
by locating their position along the sweep line, and inserting or deleting the
corresponding segment at that position. The situation is more delicate when it
comes to HEAPSWEEP.

When an endpoint starting a blue segment is encountered during the sweep,
the block in which it is located can be found using 7. If this block is blue,
the segment can be inserted directly into the corresponding kinetic queue(s); if
the block is red, however, the blue segment splits the red block into two pieces.

Similarly, when a segment ends, it may cause a block to vanish and require a
merge of two existing blocks of the same color (Fig. 1-b). Both block splits and
merges can require time proportional to the size of the blocks on which they
are performed. In a standard fashion, this cost can be reduced to a number
of kinetic queue insertion or deletion operations proportional to the size of the
smaller block involved. A merge is implemented by inserting each segment from
the smaller of the two blocks into the larger one. A split is implemented by
alternately deleting segments from the top and the bottom of the block until we
reach the position where the new segment has to be inserted. If this position is
reached from the top first, say, then the segments deleted from the bottom are
inserted back into the block, while those deleted from the top are inserted into
a new (and initially empty) block.

(«)

Figure 1. (a) A purple intersection: two new blocks are created, and new
purple intersection events are scheduled. (b) A merge of two blue blocks at
a red right endpoint followed by a split of a blue block caused by a red left
endpoint.

In summary, a split and a merge can be implemented at a cost in terms of
kinetic queue operations which is proportional to the number of segments present,
in the smaller of the two blocks involved. This cost is still high in the worst case
but, as we will see in Section 3, the connectedness of the input guarantees that
the worst case doesn’t happen too often. Without the connectedness hypothesis
(even in the disjoint case) it is straightforward to construct an example with no
purple intersections where HEAPSWEEP would run in quadratic time.

2.2 Kinetic Queue Implementations

As was mentioned above, a natural way to implement a Kkinetic queue is as a stan-
dard binary heap. However, we have been unable to prove satisfactory bounds
on the number of internal events needed to maintain such a structure during

the sweep. Instead, we propose two different implementations of kinetic queues
below, in which the number of internal events is provably within a log factor
of the total number of objects present in the queue. The first implementation,
called a heater, is randomized. The second, called a kinetic tournament, is de-
terministic. Though the asymptotic performance of the heater is not superior to
its deterministic counterpart, we have chosen to present it — even to emphasize
it — below, because we feel it may be of independent interest and is likely to
perform better in practice.

To define a heater we proceed as follows. If each object in a set is given
two numbers, a rank and a priority, there is a unique binary tree which is both
a search tree on the ranks and a heap on the priorities. Such a tree is well-
known and called a treap — Aragon and Seidel [4] used it to create their popular
randomized search tree data structure, which is a treap on objects with a given
rank and a randomly assigned priority. The randomization guarantees that this
structure is balanced with high probability. A heater is like a treap, but this
time, priorities are given and ranks are random. When an element with a given
priority is inserted in a heater, it is first assigned a random rank, and inserted
at the appropriate leaf of the heater. It then bubbles up with a sequence of
rotations until it reaches a position consistent with its priority. Deletions are
implemented in an analogous way.

When a heater is used to implement a kinetic queue in HEAPSWEEP, we need
to detect and process certain internal events in order to keep the heater consistent
with the continuously changing priorities (Fig 2). These internal events are the
intersections between parent-child segment pairs in the heater. When such an
event occurs, a rotation involving the parent and child is performed to keep the
heater consistent — this is sufficient, as at that moment the parent and child
have equal priorities and no other ordering in the heater can be changing at the
same time (by our non-degeneracy assumption). After the rotation, two parent-
child relationships change in the heater. Thus up to two existing events in the
sweep event queue Q may have to be de-scheduled (deleted), and two new events
scheduled (inserted).

A kinetic tournament is another implementation of a kinetic priority queue
based on the static tournament tree structure for leader election. It is built
on a perfectly balanced tree which represents a tournament among all elements
which ever appear in the the kinetic queue. Here also, to keep the structure
consistent with the changing priorities during the sweep, an internal event has
to be scheduled in Q for each game of the tournament whose outcome can change
in the future. When such an event happens, the new winner has to be percolated
up the tree. Similar percolations need to happen when a new object appears or
an old one disappears. Thus, unlike the heater case, tournament events in Q can
cause a number of de-schedulings and re-schedulings proportional to the height
of the tournament tree.

In section 4, we will obtain bounds on the number of internal events that
may be required to maintain these two implementations of a kinetic queue.

Figure 2. Three positions of the sweep line and the corresponding heaters with
attention focused on line segments labeled (randomly) a through f. As the sweep
line moves from position 1 to 2 passing the intersection between b and e, the
heater remains unchanged (since b and e are not a parent-child pair). However,
when it moves from position 2 to 3 passing the intersection between parent-child
pair b and d, a rotation is performed that swaps the priorities of b and d but
otherwise preserves the inorder sequence.

3 Economical Polygon Regularization

We call regularization the process of decomposing a polygon (or more generally,
a subdivision) in the plane into z-monotone simply connected regions. In this
section we look at the following situation: we have a simple polygonal face F’
(in an arrangement) containing a set R of (possibly intersecting) line segments.
We show that F' can be regularized via a number of vertical threads which cause
only O(|R|log|R]) cuts of these segments. In the next section, the cost of Merge
and Split operations of the HEAPSWEEP algorithm will be shown to depend on
these cuts.

A point on the boundary of the polygon F' is called critical if it is locally
z-extremal and concave. In other words, a critical point is a concave vertex of
F where both incident edges are to the left or to the right of the vertex.

Definition 3.1. (Economical regularization) The R-economical regulariza-
tion of F' is the decomposition of F' into z-monotone regions, obtained by the
following procedure: from each critical vertex v of F, draw two threads verti-
cally, up and down from v, until they reach the polygon boundary. Keep only
the thread that intersects the fewest elements of R.

The crucial aspect here is that we only keep the ‘shorter’ of the two threads
at each critical vertex. It is easy to see that the economical regularization defines
a monotone decomposition of P. We define the cost of the regularization to be
the total number of intersections (‘cuts’) between segments of R and the selected
threads. To analyze this cost, we use a lemma reminiscent of the classical analysis
of the simplest UNION-FIND algorithm:

Lemma 3.2. Let T be a tree and denote the left (resp. right) child of a node v
by L(v) (resp. r(v)). Each node v is given a (possibly negative) integer weight
w,. The subtree weight W, of a node v is the weight of its subtree: W, =
wy, + W) +Wi(,). Define the cost of a node v as the weight of its lightest child,
i.e. ¢, = min(Wy,), Wy(,)), and the absolute weight of T to be ST =3 |w,|.
Then, if at least one node of T has a non-zero weight, we have:

> leu| < S7log St

Proof. By induction on the structure of the tree. O

3.1 The Reachability Tree

We proceed to define a tree decomposition of the simple polygon F', on which
we later use the above lemma. In order to do so, the critical vertices need to
be separated in two different groups: the split vertices of F', that are locally z-
minimal, and the merge vertices, that are locally z-maximal. We now focus only
on the split vertices, and later invoke the same technique for the merge vertices
by reversing the z-axis. By non-degeneracy, we may assume that no two critical
vertices of F' have the same z-coordinate.

Definition 3.3. (Up/down reachability) Let F' be a simple polygon, and v
be a split vertex of F. A point p € F to the right of v is up (resp. down)
reachable from v if there exist a path from v to p inside F' which starts locally
above (resp. below) v and remains to the right of v.

Definition 3.4. (Up/down child, up/down region) A point p, p € F is an
up (resp. down) child of split vertex v if v is the rightmost split vertex from
which p is reachable, and p is up (resp. down) reachable from v. The set of all
up (resp. down) children of v is called the up-region (resp. down-region) of v,
The set r of points with no parent is called the orphan region.

Since F' is simple, no point can be simultaneously up and a down reachable
from the same vertex, so that the regions defined above partition F. Each region
is delimited by portions of the boundary of F' and by portions of vertical lines
passing through split vertices. Note that (i) a region need not be connected, and
(ii) an up-child is not necessarily ‘above’ its parent inn the plane (Fig. 3-a).

Lemma 3.5. A region contains at most one split vertex on its right boundary.
Proof. By contradiction. O

We now build a connectivity graph between these regions, with one node per
region; two nodes are connected in this graph if they have a vertical boundary in
common. By Lemma 3.5, this graph is a full binary tree called the reachability
tree of F', which we root at the orphan region. If the right boundary of a region
contains a split vertex v, the associated node in the tree bears the up and down
regions of v as its two children (Fig. 3-b).

() ®)

Figure 3. (a) A portion of a simply connected polygonal region (in white),
and the regions associated with the split vertices (vertex w is not shown); (b)
the associated portion of the reachability tree. Note that the merge vertices are
ignored in this decomposition.

3.2 Cost of the Economical Regularization

Lemma 3.6. Let F' be a simple polygon in the plane that contains a set R of
(possibly intersecting) segments. The R-economical regularization of F cuts the
segments of R a total of O(|R|log|R|) times.

Proof. We consider only the cuts made by the split vertices of F', and prove
that there are O(|R|log|R|) of them. The same argument holds for the merge
vertices. We use below the vocabulary of Lemma 3.2.

Construct the reachability tree 7 of F. If a node v of T has corresponding
region p, set the weight w, of v to be the number of segments that end in p minus
the number of segments that start in p (a segment “starts” at its left endpoint
and “ends” at its right one). Therefore, the subtree weight W, of v is simply
the number of segments crossing into p along its left boundary. If the region p
terminates on the right with a split vertex v, the cost of v is either the number
of segments entering the up-region of v, or the number of segments entering the
down-region of v, whichever is smaller.

The total absolute weight S7 of 7 is at most the number of end-points of all
segments. It follows from Lemma 3.2 that the total cost of T is O(|R|log |R|).

For the R-economical decomposition of F', we choose to make a cut at each
split vertex v with the thread (going up or down) that cuts the fewer segments
till we reach the boundary of F' again. Such a thread is a subset of the left
boundary of either the up-region or the down-region of v. Therefore, it doesn’t
cut more segments than the cost (in the above sense) of the region to which
v belongs. In particular, by proceeding this way we may choose to cut in the
‘wrong’ direction, but we will reach the boundary of F' and stop cutting before
we have spent more than we can afford. a0

It is not hard to give an example showing that the bound in this lemma is
tight to within a constant factor (a ‘ruler function’ polygon with one red segment
per tick is such an instance — the two threads from each vertex cut the same
number of red segments). Our purpose in defining the regularization is to bound
the total cost of merge and splits in HEAPSWEEP. This cost is captured by the
following corollary:

Corollary 3.7. Let B be a connected set of blue segments on the plane, and R be
a set of red segments that don’t intersect with B. The R-standard reqularization
of all faces of the arrangement defined by B cuts O(|R|log |R|) segments of R.

Proof. Since the blue segments are connected, each face of their arrangement
is a simple polygon, except for the outer face. To make the outer face simply
connected, cut that face by drawing a vertical cut up from the leftmost blue
vertex. All faces are now simply connected, and Lemma 3.6 applies to each (the
linear cost of the extra cut in the outer face is absorbed in the overall bound).

O

4 HEAPSWEEP Analysis

In this section, we obtain expected and worst-case time and space bounds for
the algorithm HEAPSWEEP in the connected case of the red-blue intersection
reporting problem. We first examine the expected time complexity of a sweep
of a set of segments by one heater. Then we perform a similar analysis for a
tournament tree. Finally, we show how the economical polygon regularization
can be used to chop all segments in pieces so as to reduce the analysis of the
HEAPSWEEP algorithm to that of a set of independent kinetic queues. For
clarity, the worst case update time of the main event queue Q is denoted by tg
(it is clear that this quantity is O(logn)).

4.1 Expected Time Bounds for Heaters

We now consider a heater H that sweeps over a set S of s line segments. We
recall that the heater structure is at the same time a heap on the intersection
height of the segments with the sweep line, and a search tree on random ranks
assigned to each segment. Expectations are taken over a uniform distribution
of all s! rankings of S. The good behavior of a heater relies on two facts that
we proceed to prove: (i) its depth D, (H) at sweep position z is logarithmic in
expectation, which allows efficient insertion/deletion of elements (Lemma 4.1),
and (ii) there are not too many internal updates, that is, segment pairs that are
in a parental relationship in H at the time they intersect (Lemma 4.5).

Lemma 4.1. Let D, (H) be the depth of the heater H, sweeping over a set S of
segments, at sweep position x. Then E[D,(H)] = O(log|S|). The expected cost
of an insertion or a deletion in H at any time is O(tg log|S|)

Proof. This result is an immediate consequence of the original analysis of treaps
by Aragon and Seidel [4], once we notice that uniformly random ranks on ele-
ments of preassigned priorities defines the same distribution on the space where
the ranks are fixed and the priorities are random.

An insertion of an element in the heater thus causes an expected O(log |S|)
rotations. Each rotation disturbs O(1) parental relationships, and requires O(1)
updates of the global priority queue. The expected time of an insertion (and of
a deletion) is thus O(tg log|S|). a

The rest of this section focuses on bounding the expected number of internal
heater updates. The analysis makes crucial use of the randomness of the struc-
ture. The analysis proceeds as follows. We first observe that the probability of a
given intersection to cause an update in the heater is related only to its level (de-
fined below). We then perform a standard computation ¢ la Clarkson-Shor [12],
based on the well known combinatorial result bounding the complexity of the
upper envelope of a set of line segments.

Definition 4.2 (Level in an arrangement). Given a set S of segments on
the plane assumed to be in a non-degenerate position, the level of a point p,
denoted ds(p) is the number of segments above that point.

Lemma 4.3. Let H be a heater that sweeps over a set S of segments. If s1,s2 €
S intersect at vertex v, the probability that this intersection modifies the heater

g — 2
8 5soyFs-

Proof. Let us place the sweep line just before v, where we assume that s; is below
s, and consider only the set S’ made of s1, s2, and the dg(v) segments that are
above v. These form a contiguous group at the top of the heater, and we restrict
our attention to the pruned tree on S’, as well as to the induced random ranking
amongst those segments. The intersection will trigger an internal update if and
only if sy is the parent of s;. However, as s; is the lowest segment in S’ it is
a leaf of the subtree, so that s» can be its parent only if they are contiguous in
the induced ranking. Now, the ranking on S’ is a uniform random variable on
all permutations of S’, and thus the probability that s;, s; are parent and child
is 2/(0s(v) + 2). O

Levels in arrangements of lines and segments are a well-studied topic in com-
putational geometry [2, 25]. Although estimating the exact number of vertices
at level ¢ has proven difficult, a simple bound on the number of vertices of level
at most £ can be obtained using standard random sampling techniques [12].

Lemma 4.4. Let S be a set of s segments in the plane. Denote by ty; the number
of vertices that have level exactly £. Then:

Zti < (L+1)sa(s).

i<t
Proof. This is a special case of Clarkson and Shor [12], Theorem 3.1. a

Lemma 4.5. Let H be o heater sweeping over s segments in the plane. De-
note by C(H) the number of intersections that cause an update of H. Then
E[C(H)] = O(sa(s)logs). The expected cost of the sweep is O(tgsa(s)logs).

Proof. By linearity of expectation and Lemma 4.3, we have:

Using summation by parts, we replace t; in this expression by its partial sum
Ty =", ti, which is bounded by Lemma 4.4. More precisely:

s—1 s—2

T 1
E[C(H)] = 25— . ‘2§T“1m
s—2 1
< Zsal) +2)_(0+2500))

= O(sa(s)logs).O

As an internal update is implemented by a single rotation which disturbs the
parental relationship of O(1) nodes, the total amount of time spent in internal
updates is O(tgsa(s)logs). By Lemma 4.1, the additional expected cost of the
2s insertions/deletions is O(tgslog s).

4.2 Kinetic Tournament Trees

It turns out that O(sa(s)log s) is also the correct bound for the number of inter-
nal events processed by a kinetic tournament used for sweeping over s segments.
Consider a divide-and-conquer strategy for computing the upper envelope of
these segments, in which the binary structure of the tournament tree reflects the
partitionings of the segments used during the recursion. The computation tree of
this algorithm mirrors the kinetic tournament, and all internal events happening
at a given node of the tournament tree correspond to features in the upper enve-
lope of the segments subset defined by the subtree rooted at that node. Hence,
the number of internal events is exactly equal to the running time of the divide
and conquer algorithm, which is well known to be O(sa(s) log s) [21]. This type
of analysis will be elaborated upon in [5].

The tournament tree can be made dynamic as follows. Imagine a very large
sequence of leaves and a perfectly balanced prototypical tournament tree built
upon that sequence. At any one time the actual elements present in the tour-
nament tree occupy a portion near the leftmost leaf of that prototypical tree,
determined by the subtree rooted at the node where the current leader is deter-
mined. Insertions are processed by adding new leaves to the right of the current
set of leaves, creating, on occasion, a new root to accommodate more elements.
In order to hold the structure in an amount of space linear in the number of
nodes present, upon deletion of a leaf element, the lowest node representing a
game with that element absorbs and removes its other (non-deleted) child (this
works just like the ‘easy case’ in binary tree node deletion — when the node being
removed can just be short-circuited). Both insertions and deletions must then
percolate up the tournament tree.

4.3 Time and Space Complexity of HEAPSWEEP

It is time to conclude the analysis by putting together the regularization lemma
and the analysis of heaters. Recall that n is the total number of red and blue seg-

ments, and that k is the number of bichromatic intersections that the algorithm
will output.

Theorem 4.6. The HEAPSWEEP algorithm reports all purple intersections be-
tween red and blue segments using linear space and O((n + k)a(n)log® n) time.

Proof. The working space requirement of HEAPSWEEP is simple to assess. Each
kinetic queue requires linear space in the number of segments it maintains, and
it is responsible for a number of events in the global queue Q that is also linear
in its size. Other than endpoints and kinetic queues internal events, the only
other events in Q are the scheduled purple intersections, of which at any time
there can be at most one per red-blue alternation along the sweep line. Thus the
total size at any time of the search tree T" for endpoints, of the event queue Q,
and of all the kinetic queues together, is O(n). We use a straightforward binary
heap implementation for Q, so an update (insertion or deletion) in the global
queue takes time tg = O(logn).

We now restrict our attention to the time complexity of the maintenance of
the red blocks. As each segment may appear in several kinetic queues during
its life-time, it is necessary to chop all segments into a reasonable number of
fragments, so that each fragment appears in only one kinetic queue.

The red segments are broken up in two steps. First, red segments are broken
at all purple intersections into proto-fragments. Such an intersection can now be
seen (from the point of view of red blocks) as the deletion of a red proto-fragment
from one kinetic queue, followed by an insertion of another proto-fragment, ei-
ther in a new kinetic queue, or into an existing one (Fig. 1-a). If there are n,
red segments, the number of red proto-fragments is exactly n, + k. Second, the
R-economical regularization of the faces defined by the blue segments, (Defini-
tion 3.1) further partitions the n, + k red proto-fragments into fragments, at
the points where they are cut by the vertical threads. From corollary 3.7, the
proto-fragments (which don’t intersect the blue segments anymore) are cut in
O((n,+k)logn) fragments. The merge of two kinetic queues can now be seen as
the destruction of all fragments from the smaller one, together with the insertion
of equally many new fragments into the larger one. Similarly, the split operation
involves the deletion of some fragments from one kinetic queue and the creation
of a new one made only of new fragments.

It is now possible, if we set aside the blue segments, to describe the sit-
uation as follows: We have a family S of O((n, + k)logn) segments (frag-
ments), partitioned into a number of disjoint subsets (S;);, each swept over
by a different kinetic queue. Using one of the prescribed kinetic queue imple-
mentations, the overall time of insertions, deletions, and internal updates is
>, O(to|Sila(S;) log |S;|) = O(tg(n, + k)a(n)log?n). The same analysis ap-
plies to the cost related to the blue kinetic queues. The maintenance cost of the
“interface” between blocks, i.e. the purple events, does not add to the complex-
ity: the scheduling/de-scheduling of a purple event can only be caused by (and
charged to) an internal update that modifies the top or bottom of one of the
adjacent kinetic queues.

With the bound on tg mentioned above, this implies the desired bound on the
running time of HEAPSWEEP, which is randomized or deterministic depending
on the specific kinetic queue implementation. a0

5 Applications and Related Results

The algorithm HEAPSWEEP was developed in the context of a theory of poly-
hedral tracings and their convolution [6]. In a few words, one obtains the con-
volution of two polyhedra (a red and a blue) by first computing their geometric
duals, projecting these duals on the unit sphere, and then computing all pairs
of red-blue intersecting features. For non-convex polyhedra, the projection of
the dual on the sphere has self-intersections, which do not contribute to the
convolution. As this projection is connected, HEAPSWEEP can be used, and it
is possible to compute the convolution of two polyhedra of sizes n, and n; in
output sensitive time O((n + k)a(n)log® n), where n = n, 4+ ny, and k is the size
of the convolution. Amongst other applications, the convolution can be used to
obtain the Minkowski sum of two polyhedra.

We mention below some extensions to the main algorithm. The proofs of the
stated results are obtained from minor modifications of the above analysis.
Monotone arcs. Although the analysis has been performed for line segments
for the sake of the exposition, the same algorithm applies for a more general
class of arcs. The only difference is the complexity of the upper envelope of a
family of arcs, which is then carried through the entire analysis, for both the
randomized and the deterministic implementations of a kinetic queue mentioned
in this paper. The regularization lemma also holds if line segments are replaced
by z-monotone arcs.

Theorem 5.1. Let R, B be two sets of x-monotone arcs, such that each mono-
chromatic family defines a connected point set on the plane. Assume that two
pairs of arcs intersect at most s times. If n is the number of input arcs, the
algorithm HEAPSWEEP computes all k purple intersections in time O(As12(n +
k)log® n), where Ay(m) is the length of the longest (m,s)-Davenport-Schinzel
sequence.

For instance, algebraic curves of bounded degree obey the requirements men-

tioned in this theorem (provided they are first decomposed into a constant num-
ber of z-monotone parts each).
Several components. HEAPSWEEP can be used without modification if the
blue set has ¢, components and the red set has ¢, components. In that case,
Corollary 3.7 needs to be modified: from each component, a thread needs to be
drawn to obtain a simple arrangement, and the algorithm runs in time O((cyn,+
crnp + k)a(n)logn). If one point from each component is given, it is possible
to compute a low stabbing number spanning tree between these points [23],
and thus provide connected input to HEAPSWEEP. The spurious intersections
generated by the spanning trees cause a total running time of O((n,+/cs+ns+/Cr+
k)a(n)log® n).

General case in linear space. In order to solve the general red-blue inter-
section problem in linear space, the cuttings technique [20, 1] can be applied,
but the running time becomes O(n*/3+¢ 4 k). The € term can be made as small
as desired, but at the cost of a increased hidden constant in the space bounds.
Using HEAPSWEEP, we obtain a O((n*/? + k)a(n)log® n) algorithm to report
all intersections in the general case, with a linear space cost that has a small
implied constant. This can be done by preprocessing the input to identify con-
nected subsets of segments (see [20, 3]), on which it is then possible to use the
variation of HeapSweep for known components mentioned above. Details are
omitted in this paper.

j-level. If the j-level in an arrangement of n arcs has complexity &, the algorithm
HeAPSWEEP can be adapted to compute it in time O(\,(n + k) log® n), whether
or not the input set is connected, by keeping two kinetic queues grouping all
segments above and below the current j-level. This generalizes the results of
Edelsbrunner and Welzl [18], who computed the j-level of an arrangement of
line segments in O((n + k) log” n) time using a line sweep technique that can be
retroactively be seen as a precursor of HEAPSWEEP. Cole, Sharir, and Yap [13]
improved these bounds to O((n + k) log? j).

Both methods mentioned above use the data structure of Overmars and

van Leeuven [26] for dynamic maintenance of a convex hull with insertions and
deletion cost of O(log2 n) per operation. Mark de Berg pointed out that this
data structure can also be used in HEAPSWEEP, in replacement of the kinetic
queue, giving an improved O((n + k) log® n) algorithm for reporting all k& purple
intersections between n red and blue line segments [14].
Kinetic heaps. We mentioned earlier that the most straightforward idea for
implementing a kinetic queue is to use a standard binary heap. If we use a
kinetic heap to sweep over an arrangement of s infinite straight lines, then we
can prove that the number of internal events processed will be O(slog?s) (the
argument is non-trivial). But we were unable to extend this argument to the
case of sweeping over a arrangement of line segments, as needed in this paper.

6 Conclusions

We have presented a new algorithm, HEAPSWEEP, to report all purple inter-
sections between red and blue possibly intersecting line segments on the plane.
HEAPSWEEP is a variation of the line sweep method, that stores only a partial
ordering of segments on the sweep line. The sweep line is divided into maximal
contiguous blocks of monochromatic segments and the segments of each block
are stored in a novel data structure called a kinetic queue. A Kkinetic queue
keeps track of the top and bottom segments of a block and allows the detection
of purple intersections that can only occur between top and bottom segments of
consecutive blocks. If the set of red segments (resp. blue segments) is connected,
i.e. their union as a point set is connected, we have proved that HEAPSWEEP
reports all purple intersections in expected time O((n + k)a(n)log® n), where n
is the input size and k is the number of purple intersections.

The connectedness assumption is interesting as it is not uncommon in prac-
tice, and yet there does not seem to be any obvious way to take advantage of
it in traditional techniques such as divide-and-conquer, random sampling, and
segment trees — since this precious property is not preserved in subsets of the
input set. In contrast, HEAPSWEEP makes an interesting use of connectedness,
through the regularization lemma, that may find use in other applications.

There are still too many logarithms in the running time of HEAPSWEEP, in
particular in the k£ term. In order to reduce this overhead, we would like to see an
integration of our technique (that relaxes the vertical ordering of the sweep line)
with the methods of Edelsbrunner and Guibas [16] or Mairson and Stolfi [22]
(that relax the horizontal ordering of the sweep). The bounds we obtained also
give hope that a filtering search technique [8] coupled with geometric partitioning
could achieve an optimal O(nlogn + k) running time (in a sense, HEAPSWEEP
is an instance of filtering search, as it detects more intersections than necessary
— but not too many more).

There doesn’t seem to be any hope of adapting HEAPSWEEP to solve the
counting problem efficiently. The hereditary segment-tree approach [10] used to
obtain an optimal algorithm for counting purple intersections in the disjoint case
cannot be adapted either, since segment tree nodes may have a disconnected set
of segments. In fact, we believe that connectedness does not simplify the count-
ing problem, and we would like to see an 2(n/3) lower bound to substantiate
this claim.

Acknowledgments. We would like to thank Jan Jannink for suggesting the
term “heater”, and Chandra Chekuri and Sanjeev Khanna for useful discussions.
Special thanks to John Hershberger, who is largely responsible for the determin-
istic implementation of the kinetic queue with a tournament tree, and to Mark
de Berg for suggesting the use of the dynamic convex hull data structure. We
also wish to thank an anonymous referee for pointing out the reference [13].

Leonidas Guibas wishes to acknowledge support by NSF Grant CCR-9215219
and US Army Grant 5-23542A during this research.

References

1. P. K. Agarwal. Partitioning arrangements of lines: II. Applications. Discrete
Comput. Geom., 5:533-573, 1990.

2. P. K. Agarwal, M. de Berg, J. Matousek, and O. Schwarzkopf. Constructing levels
in arrangements and higher order Voronoi diagrams. In Proc. 10th Annu. ACM
Sympos. Compul. Geom., pages 67-75, 1994.

3. P. K. Agarwal and M. Sharir. Red-blue intersection detection algorithms, with
applications to motion planning and collision detection. In Proc. 4th Annu. ACM
Sympos. Compul. Geom., pages 70-80, 1988.

4. C. Aragon and R. Seidel. Randomized search trees. In Proc. 30th Annu. IEEE
Sympos. Found. Comput. Sci., pages 540-545, 1989.

5. J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data. In
preparation.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. Basch, L.J. Guibas, G.D. Ramkumar, and L. Ramshaw. Polyhedral tracings and
their convolution. In Proc. 2nd Workshop on Algorithmic Fundations of Robotics,
1996.

J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput., C-28:643—-647, 1979.

B. Chazelle. Filtering search: a new approach to query-answering. SIAM J.
Comput., 15:703-724, 1986.

. B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line seg-

ments in the plane. J. ACM, 39:1-54, 1992.

B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Algorithms for bichro-
matic line segment problems and polyhedral terrains. Algorithmica, 11:116-132,
1994.

B. Chazelle, H. Edelsbrunner, L.. Guibas, M. Sharir, and J. Snoeyink. Computing
a face in an arrangement of line segments and related problems. STAM J. Comput.,
22:1286-1302, 1993.

K. L. Clarkson and P. W. Shor. Applications of random sampling in computational
geometry, II. Discrete Comput. Geom., 4:387-421, 1989.

R. Cole, M. Sharir, and C. K. Yap. On k-hulls and related problems. SIAM J.
Comput., 16:61-77, 1987.

M. de Berg. Personal communication. 1996.

M. de Berg and O. Schwarzkopf. Cuttings and applications. Report RUU-CS-92-26,
Dept. Comput. Sci., Utrecht Univ., Utrecht, Netherlands, August 1992.

H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement.
J. Comput. Syst. Sci., 38:165-194, 1989. Corrigendum in 42 (1991), 249-251.

H. Edelsbrunner and E. P. Miicke. Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms. ACM Trans. Graph., 9:66-104,
1990.

H. Edelsbrunner and E. Welzl. Constructing belts in two-dimensional arrangements
with applications. SIAM J. Comput., 15:271-284, 1986.

J. Erickson. New lower bounds for Hopcroft’s problem. In Proc. 11th Annu. ACM
Sympos. Comput. Geom., pages 127-137, 1995.

L. Guibas, M. Overmars, and M. Sharir. Intersecting line segments, ray shooting,
and other applications of geometric partitioning techniques. In Proc. 1st Scand.
Workshop Algorithm Theory, volume 318 of Lecture Notes in Computer Science,
pages 64-73. Springer-Verlag, 1988.

S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of gen-
eralized path compression schemes. Combinatorica, 6:151-177, 1986.

H. G. Mairson and J. Stolfi. Reporting and counting intersections between two sets
of line segments. In R. A. Earnshaw, editor, Theoretical Foundations of Computer
Graphics and CAD, volume F40 of NATO ASI, pages 307-325. Springer-Verlag,
Berlin, West Germany, 1988.

J. Matousek. Spanning trees with low crossing number. Informatique Théorique
et Applications, 25(2):103-123, 1991.

J. Matousek. Range searching with efficient hierarchical cuttings. Discrete Comput.
Geom., 10(2):157-182, 1993.

K. Mulmuley. On levels in arrangements and Voronoi diagrams. Discrete Comput.
Geom., 6:307-338, 1991.

M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane.
J. Comput. Syst. Sci., 23:166—204, 1981.

27. Larry Palazzi and Jack Snoeyink. Counting and reporting red/blue segment inter-
sections. In Proc. 3rd Workshop Algorithms Data Struct., volume 709 of Lecture
Notes in Computer Science, pages 530-540, 1993.

28. M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geomelric
Applications. Cambridge University Press, New York, 1995.

